

Abstract-- Efficient execution of applications requires insight

into how the system features impact the performance of the
application. This insight generally results from significant
experimental analysis and possibly the development of
performance models. This paper proposes the web-based
Prophesy system, a performance analysis and modeling
infrastructure. Prophesy uses databases that allow for the
recording of performance data, system features and application
details. Prophesy also includes three automated modeling
techniques that facilitates the analysis process. Hence,
Prophesy can assist in gaining the needed performance insight
based upon one’s experience and that of others.

I. INTRODUCTION

ODAY, parallel and distributed systems are very complex,
requiring tools to gain insights into the performance of

applications executed on such environments. This paper
presents the web-based Prophesy system, a performance
analysis and modeling infrastructure that uses databases to aid
in gaining this needed insight based upon one’s experience
and that of others. The Prophesy database allows for the
recording of performance data, system features and application
details. Prophesy also includes three automated modeling
techniques to facilitate the analysis process. As a result,
Prophesy can be used to develop models based upon
significant data, identify the most efficient implementation of a
given function based upon the given system configuration,
explore the various trends implicated by the significant data,
and predict the performance on a different system.
 The remainder of this paper is organized as follows. Section
2 describes the Prophesy framework and main components.
Section 3 presents the Prophesy database, and data collection
framework. Section 4 presents the automated model builder,
and describes the three automated modeling methods. Section
5 summarizes this paper.

This work was supported in part by the National Science Foundation

under NSF NGS grant EIA-9974960, a grant from NASA Ames and two
NSF ITR grants --- GriPhyN and Building Human Capital.

Valerie E. Taylor, Department of Computer Science, Texas A&M
University, College Station, TX 77843 (Email: taylor@cs.tamu.edu).

Xingfu Wu, Department of Electrical and Computer Engineering,
Northwestern University, Evanston, IL 60208 (Email:
wuxf@ece.nwu.edu).

Rick Stevens, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL 60439.

II. PROPHESY FRAMEWORK

The Prophesy framework consists of three major components:
data collection (left section) and data analysis (right section),
and three central databases, as illustrated in Figure 1. The data
collection component focuses on the automated
instrumentation and application code analysis at the level of
basic blocks, procedures, and functions. An application code
can be instrumented at the basic-block level such that a
significant amount of performance information can be gathered
to gain insight into the performance relationship between the
application, hardware and system software. The resultant
performance data is automatically stored in the performance
database. Manual data entry is also supported. The data
analysis component produces analytical performance models
with coefficients, at the granularity specified by the user. The
models are developed based upon performance data from the
performance database, model templates from the template
database, and system characteristics from the systems
database.

Figure 1 Prophesy framework

An application goes through three stages (instrumentation

of the application, performance data collection of many runs,
and model development using optimization techniques) to
generate an analytical performance model. These models, when
combined with data from the system database, can be used by
the prediction engine to predict the performance on a different

Prophesy: A Web-based Performance Analysis and Modeling
System for Parallel and Distributed Applications

Valerie E. Taylor, Xingfu Wu, and Rick Stevens

T

compute platform. Prophesy is an infrastructure designed to
explore the plausibility and credibility of various techniques in
performance evaluation (such as scalability, efficiency,
speedup, performance coupling between application kernels,
etc.) and allow users to use various metrics collectively to
bring performance analysis environments to the most
advanced level.

III. PROPHESY DATABASE AND DATA COLLECTION

Recall that the Prophesy Database must accommodate queries
that lead to the development of performance models, allow for
prediction of performance on other systems, and allow for one
to obtain insight into methods to improve the performance of
the application on a given distributed system. Hence, the
database must facilitate the following query types:

• Identify the best implementation of a given function for a

given system configuration (identified by the run-time
system, operating system, processor organization, etc.).
This can be implemented querying the database for
comparison of performance data on different systems.

• Use the raw performance data to generate analytical
(nonlinear or linear) models of a given function or
application; the analytical model can be used to
extrapolate the performance under different system
scenarios and can be used to assist programmers in
optimizing the strategy or algorithms in their programs.

• Use the performance data to analyze application-system
trends, such as scalability, speedup, I/O requirements,
communication requirements, etc. This can be
implemented querying the database to calculate the
corresponding formula.

• Use the performance data to analyze user specific metrics
such as coupling between functions.

 In this section, we present the implementation of the

database that accommodates the aforementioned query types
and data uses. See [WT01a, WT01b] for detailed information
about the Prophesy database and automated instrumentation.
Prophesy assumes that applications can be decomposed into
modules (or files that comprise an application), which can be
further decomposed into functions that can be decomposed
into basic units in a hierarchical manner.

A. Prophesy Database

The Prophesy database has a hierarchical organization,
consistent with the hierarchical structure of the applications.
The schema shown in Figure 2 includes all three databases
given in Figure 1: performance database, system models
database and template database. The entities in the database
are organized into four areas: application information,
executable information, run information and performance
statistics. Descriptions of these four areas are given below.

• Application Information: includes entities that give the
application name, version number, a short description,
owner information and password (such that only the
owner can modify or add data for a given application). It is
assumed that an application goes through various
versions as one adds different functionalities over time.
Data are placed into these entities when a new application
is being developed.

• Executable Information: includes all of the entities related
to generating an executable of an application. These
entities include details about compilers, libraries and the
control flow. The details are given for modules and
functions. It is assumed that applications may be
developed using multiple languages, such as C, C++,
Fortran and HPF. These entities include details about
executable, modules, functions, model templates,
compilers, libraries and control flow. Data are placed into
these entities when a new executable is generated.

• Run Information: includes all of the entities related to
running an executable, which includes the system
information and inputs used for execution. The system
may be a single processor, single parallel machine or
distributed system. These entities include details about
the inputs, system(s) used for execution, system resource
and connections between resources. Data are placed into
these entities for each run of a given executable.

• Performance Statistics Information: includes all of the
entities related to the raw performance data collected
during execution. These entities include details about the
application performance, function performance, basic unit
performance and data structure performance. Performance
statistics are collected for different levels of granularities.
Since a basic unit can be accessed from multiple functions,
statistics are collected at the levels of both the function
and basic unit. Note that basic unit refers to a code
segment that may be of smaller granularity than a function
but higher granularity than a basic block.

Figure 2. Framework of Prophesy Database Schema

Figure 3. PAIDE framework

B. Data Collection

PAIDE (Prophesy Automatic Instrumentation and Data Entry)],
shown in Figure 3, is the data collection component of the
Prophesy system with the goal of minimizing instrumentation
overhead [WT01b]. PAIDE focuses on the automatic
instrumentation of codes at the level of basic blocks,
procedures, or functions. The default mode consists of
instrumenting the entire code at the level of basic loops and
procedures. A user can specify that the code be instrumented
at a finer granularity than that of loops or identify the particular
events to be instrumented. The resultant performance data is
automatically placed in the performance database (via ftp) and
is used by the data analysis component to produce analytical
performance models at the granularity specified by the user. In
addition to instrumenting the code, PAIDE generates two files.
The first file contains the performance relations that connect
each performance event with the corresponding line of code.
The second file contains the control flow information of the
application.
 There are two ways to input the performance data into the
database: automatic data entry and interactive data entry.
Automatic data entry uses Perl and SOAP to automatically
process the performance data files and upload the data into the
Prophesy database. The interactive data entry entails using the
web interface to manually place the data into the Prophesy
database.

IV. AUTOMATED MODEL BUILDER

The main goal of the Prophesy automated model builder is to
automatically generate performance models to aid in
performance analysis and evaluation of a given application or
execution environment. Currently, Prophesy supports the
following modeling techniques: curve fitting, parameterization,
and composition methods. The first two methods are well-
established techniques; the last method, coupling, wad

developed by the Prophesy research group [TW01, TW02].
Each model type has its own unique set of options and
parameters that a user can easily modify to explore different
scenarios, in terms of the applications and execution
environment. These three methods are described below.

A. Curve Fitting Method

Curve Fitting is a method that uses optimization techniques
to develop a model. In this case, the model builder uses a least
squares fit when performing the curve fit; this method uses the
empirical data found in the Prophesy database to generate the
model. The user determines the empirical data and then Octave
is used to generate the resultant model. The weakness in this
model is the lack of exposure of the system terms versus the
application terms. The models generated from curve fitting are
generally a function of some input parameters of the
application and the number of parameters. The system
performance, i.e. the operation execution time or
communication performance, are clustered together with the
coefficients determined by the curve fitting; such parameters
are not exposed to the user. The advantage of this method is
the fact that only the empirical data is needed to generate the
models; no manual analysis is required.

B. Parameterization Method

Parameterization is a method that combines manual analysis
of the code with system performance measurements. The
manual analysis entails hand-counting the number of different
operations in the code. It is assumed that this type of analysis
is done on kernels or functions that are generally in the range
of 100 lines of code or less. With Prophesy, the manual
analysis is used to produce an analytical equation with terms
that represent the application and the execution environment.
Hence, users can explore different application and execution
environment scenarios with parameterized models. The only
drawback to this method is the manual analysis step that is
involved; yet this step is done only once per kernel.

C. Composition Method

The composition modeling technique focuses on how to
effectively represent the performance of an application in terms
of its component kernels or functions. Hence, this technique
focuses on the level of functions, for which most applications
have only a few major functions. The major goal of the
composition method is to use kernel performance models to
develop the full application performance models. When
developing performance models of applications it is extremely
useful to understand the relationships between the different
functions that compose the application. Basically, we want to
determine how one kernel affects another, whether or not it is a
constructive or a destructive relationship. Further, we want to
be able to encapsulate this information into a coefficient that
can be used in a performance model of the application. As an

example, let’s say we have an application composed of three
kernels, kernelA, kernelB, and kernelC which operates in a
loop. Also, assume that we analyzed each kernel and
produced modelA, modelB, and modelC accordingly. The
composition method would provide a set of coefficients for the
relationships such that the following is satisfied, where T is the
execution time for the application:

T = ? modelA + ? modelB + ? modelC

where the coefficients ?, ?, and ? represents the performance
relation between the three kernels that identifies how they
should be combined to reflect the performance of the
application. See the reference [TW02] for the detailed
information about the coupling method.

V. CONCLUSIONS

This paper presented the web-based Prophesy system for
performance analysis and modeling of parallel and distributed
applications. Prophesy includes automatic instrumentation of
applications, a database to hold performance and context
information, and an automated model builder for developing
performance models. The Prophesy system allows users to
gain needed insights into application performance based upon
their experience as well as that of others. The Prophesy web
interface is given in Figure 4 and can be found at the following
URL: http://prophesy.mcs.anl.gov. Currently, we are focused
on extending the tool to different application communities.

Figure 4. Prophesy web page

REFERENCES

[TW01] Valerie Taylor, Xingfu Wu, Xin Li, Jonathan Geisler,
Zhiling Lan, Mark Hereld, Ivan R. Judson and Rick
Stevens, Prophesy: Automating the Modeling Process,
Third Annual International Workshop on Active
Middleware Services (invited paper), CA, August 2001.

[TW02] Valerie Taylor, Xingfu Wu, Jonathan Geisler, and Rick
Stevens, Using Kernel Couplings to Predict Parallel
Application Performance, Proc. of the 11th IEEE
International Symposium on High-Performance
Distributed Computing (HPDC 2002), Edinburgh,
Scotland, July 24-26, 2002

[WT01a] Xingfu Wu, Valerie Taylor, J. Geisler, Z. Lan, X. Li, R.
Stevens, M. Hereld, I. Judson, Design and Development
of Prophesy Performance Database for Distributed
Scientific Applications, Proceedings of the 10th SIAM
Conference on Parallel Processing, March 2001.

[WT01b] Xingfu Wu, Valerie Taylor, and Rick Stevens, Design
and Implementation of Prophesy Automatic
Instrumentation and Data Entry System, Proceedings of
the 13th IASTED Parallel and Distributed Computing and
Systems Conference (PDCS2001), August 2001.

